organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

11*H*-Dibenzo[*b*,e]azepine-6-carbonitrile

Guo-Dong Fan,^a Yu-Liang Xiao,^b Gui-Rong You^b and Gui-Yun Duan^b*

^aCollege of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China, and ^bCollege of Pharmaceutical Sciences, Taishan Medical College, Tai'an 271016, People's Republic of China

Correspondence e-mail: duanguiyun@yahoo.cn

Received 5 October 2008; accepted 13 October 2008

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.097; data-to-parameter ratio = 13.3.

The title compound, $C_{15}H_{10}N_2$, crystallizes with two independent molecules in the asymmetric unit. The two benzene rings make dihedral angles of 60.32 (2) and 61.35 (3)°. The crystal packing is stabilized by weak π - π stacking interactions [centroid-to-centroid distances = 3.673 (4) and 3.793 (4) Å].

Related literature

For discussions of the biological activity of the title compound, see: Bakker *et al.* (2000); Bielory & Ghafoor (2005); Schmutz *et al.* (1967). For a similar structure, see: Li *et al.* (2006).

Experimental Crystal data

erystat aata	
$C_{15}H_{10}N_2$	a = 10.125 (2) Å
$M_r = 218.25$	b = 10.275 (2) Å
Triclinic, P1	c = 12.749 (3) Å

$\alpha = 105.96 \ (3)^{\circ}$	
$\beta = 99.18 \ (2)^{\circ}$	
$\gamma = 109.04 (3)^{\circ}$	
V = 1159.2 (6) Å ³	
Z = 4	

Data collection

Bruker SMART CCD area-detector	12026 measured reflections
diffractometer	4084 independent reflections
Absorption correction: multi-scan	3382 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.021$
$T_{\rm min} = 0.989, \ T_{\rm max} = 0.993$	

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.036 & 308 \text{ parameters} \\ wR(F^2) = 0.097 & H\text{-atom parameters constrained} \\ S = 1.03 & \Delta\rho_{\max} = 0.19 \text{ e } \text{\AA}^{-3} \\ 4084 \text{ reflections} & \Delta\rho_{\min} = -0.13 \text{ e } \text{\AA}^{-3} \end{array}$

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.15 \times 0.12 \times 0.10$ mm

T = 273 (2) K

Table 1

Selected interatomic distances (Å).

Cg1 is the centroid of the ring C8–C13 and Cg2 is the centroid of the ring C23–C28.

$Cg1 \cdots Cg1^{i}$	3.673 (4)	$Cg2 \cdots Cg2^{ii}$	3.793 (4)
Symmetry codes: (i) $-x + 2$	2, -y + 1, -z + 1	1; (ii) $-x + 1$, $-y + 1$, $-z$.	

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2271).

References

Bakker, R. A., Wieland, K., Timmerman, H. & Leurs, R. (2000). Eur. J. Pharmacol. 387, R5–R7.

Bielory, L. & Ghafoor, S. (2005). Curr. Opin. Allergy Clin. Immunol. 5, 437–440.

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin. Li, Q.-B., Yang, W.-C., Han, Y.-J. & Zhao, X.-J. (2006). Acta Cryst. E62, o3021– o3022.

Schmutz, J., Hunziker, F. & Kunzle, F. (1967). *Helv. Chim. Acta*, **50**, 245–248. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

Acta Cryst. (2008). E64, o2126 [doi:10.1107/S1600536808033072]

11*H*-Dibenzo[*b*,*e*]azepine-6-carbonitrile

G.-D. Fan, Y.-L. Xiao, G.-R. You and G.-Y. Duan

Comment

The title compound, (1), is an intermediate in the synthesis of Epinastine which is an antihistamine agent (Bakker *et al.*, 2000; Bielory & Ghafoor, 2005), and was first synthesized in 1967 (Schmutz *et al.*, 1967).

Compound (1) crystallizes with two independent molecules in the asymmetric unit (Fig. 1), all bond lengths and angles are normal and in a good agreement with those reported previously (Li *et al.*, 2006). The dihedral angles between the planes of benzene rings in the two independent molecules are 60.32 (2) and 61.35 (3)°. π - π stacking interactions (Table 1) are present in the structure (*Cg*1: C8–C13; *Cg*2: C23–C28).

Experimental

Compound (1) was synthesized from 6-chlor-11*H*-dibenzo[b,e]azepine (1 mmol, 0.23 g) and sodium cyanade (1.1 mmol, 0.05 g) in 10 ml DMSO as solvent at 363 K for 5 h to afford the title compound (Yield 73%, 0.16 g). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a methanol solution at room temperature for one week.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$.

Figures

Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 35% probability level.

11H-Dibenzo[b,e]azepine-6-carbonitrile

Crystal data

C ₁₅ H ₁₀ N ₂	Z = 4
$M_r = 218.25$	$F_{000} = 456$

Triclinic, $P\overline{1}$
Hall symbol: -P 1
<i>a</i> = 10.125 (2) Å
<i>b</i> = 10.275 (2) Å
c = 12.749 (3) Å
$\alpha = 105.96 \ (3)^{\circ}$
$\beta = 99.18 \ (2)^{\circ}$
$\gamma = 109.04 \ (3)^{\circ}$
V = 1159.2 (6) Å ³

Data collection

Bruker SMART CCD area-detector diffractometer	4084 independent reflections
Radiation source: fine-focus sealed tube	3382 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 273(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.989, T_{\max} = 0.993$	$k = -12 \rightarrow 12$
12026 measured reflections	$l = -14 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.036$	$w = 1/[\sigma^2(F_o^2) + (0.0446P)^2 + 0.1613P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.097$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
4084 reflections	$\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$
308 parameters	Extinction correction: SHELXTL (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.037 (2)

 $D_{\rm x} = 1.251 \text{ Mg m}^{-3}$ Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.2-28.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 273 (2) KBlock, brown

 $0.15 \times 0.12 \times 0.10 \text{ mm}$

Cell parameters from 4851 reflections

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

N10.93668 (11)0.20617 (11)0.18911 (9)N21.10390 (18)0.47578 (17)0.10411 (14)N30.33399 (10)0.33411 (11)0.30617 (9)N40.42697 (16)0.69062 (15)0.35893 (13)C10.87147 (12)0.11423 (13)0.24622 (10)C20.93247 (14)0.01429 (14)0.25883 (12)H2A1.00960.01050.2288C30.87991 (17)-0.07883 (16)0.31523 (14)H3B0.9238-0.14250.3261C40.76259 (18)-0.07763 (18)0.35547 (14)	$\begin{array}{c} 0.0486 \ (3) \\ 0.0874 \ (4) \\ 0.0474 \ (3) \\ 0.0816 \ (4) \\ 0.0466 \ (3) \\ 0.0568 \ (3) \\ 0.068* \\ 0.0699 \ (4) \\ 0.084* \end{array}$
N21.10390 (18)0.47578 (17)0.10411 (14)N30.33399 (10)0.33411 (11)0.30617 (9)N40.42697 (16)0.69062 (15)0.35893 (13)C10.87147 (12)0.11423 (13)0.24622 (10)C20.93247 (14)0.01429 (14)0.25883 (12)H2A1.00960.01050.2288C30.87991 (17)-0.07883 (16)0.31523 (14)H3B0.9238-0.14250.3261C40.76259 (18)-0.07763 (18)0.35547 (14)	0.0874 (4) 0.0474 (3) 0.0816 (4) 0.0466 (3) 0.0568 (3) 0.068* 0.0699 (4) 0.084*
N30.33399 (10)0.33411 (11)0.30617 (9)N40.42697 (16)0.69062 (15)0.35893 (13)C10.87147 (12)0.11423 (13)0.24622 (10)C20.93247 (14)0.01429 (14)0.25883 (12)H2A1.00960.01050.2288C30.87991 (17)-0.07883 (16)0.31523 (14)H3B0.9238-0.14250.3261C40.76259 (18)-0.07763 (18)0.35547 (14)	0.0474 (3) 0.0816 (4) 0.0466 (3) 0.0568 (3) 0.068* 0.0699 (4) 0.084*
N40.42697 (16)0.69062 (15)0.35893 (13)C10.87147 (12)0.11423 (13)0.24622 (10)C20.93247 (14)0.01429 (14)0.25883 (12)H2A1.00960.01050.2288C30.87991 (17)-0.07883 (16)0.31523 (14)H3B0.9238-0.14250.3261C40.76259 (18)-0.07763 (18)0.35547 (14)	0.0816 (4) 0.0466 (3) 0.0568 (3) 0.068* 0.0699 (4) 0.084*
C10.87147 (12)0.11423 (13)0.24622 (10)C20.93247 (14)0.01429 (14)0.25883 (12)H2A1.00960.01050.2288C30.87991 (17)-0.07883 (16)0.31523 (14)H3B0.9238-0.14250.3261C40.76259 (18)-0.07763 (18)0.35547 (14)	0.0466 (3) 0.0568 (3) 0.068* 0.0699 (4) 0.084*
C20.93247 (14)0.01429 (14)0.25883 (12)H2A1.00960.01050.2288C30.87991 (17)-0.07883 (16)0.31523 (14)H3B0.9238-0.14250.3261C40.76259 (18)-0.07763 (18)0.35547 (14)	0.0568 (3) 0.068* 0.0699 (4) 0.084*
H2A1.00960.01050.2288C30.87991 (17)-0.07883 (16)0.31523 (14)H3B0.9238-0.14250.3261C40.76259 (18)-0.07763 (18)0.35547 (14)	0.068* 0.0699 (4) 0.084*
C30.87991 (17)-0.07883 (16)0.31523 (14)H3B0.9238-0.14250.3261C40.76259 (18)-0.07763 (18)0.35547 (14)	0.0699 (4) 0.084*
H3B0.9238-0.14250.3261C40.76259 (18)-0.07763 (18)0.35547 (14)	0.084*
C4 0.76259 (18) -0.07763 (18) 0.35547 (14)	
	0.0747 (5)
H4A 0.7275 -0.1399 0.3944	0.090*
C5 0.69679 (16) 0.01499 (17) 0.33859 (13)	0.0679 (4)
H5A 0.6151 0.0122 0.3640	0.082*
C6 0.74956 (13) 0.11314 (15) 0.28418 (11)	0.0532 (3)
C7 0.67936 (14) 0.21544 (17) 0.26432 (13)	0.0644 (4)
H7A 0.6553 0.2013 0.1841	0.077*
H7B 0.5900 0.1936 0.2871	0.077*
C8 0.78013 (14) 0.37191 (16) 0.33094 (11)	0.0549 (3)
C9 0.74955 (18) 0.4600 (2) 0.41954 (13)	0.0707 (4)
H9A 0.6653 0.4210 0.4403	0.085*
C10 0.8421 (2) 0.6044 (2) 0.47717 (14)	0.0800 (5)
H10A 0.8204 0.6615 0.5369	0.096*
C11 0.9659 (2) 0.66483 (19) 0.44740 (13)	0.0732 (4)
H11A 1.0271 0.7630 0.4859	0.088*
C12 0.99953 (16) 0.58006 (15) 0.36048 (12)	0.0596 (4)
H12A 1.0832 0.6213 0.3398	0.071*
C13 0.90890 (13) 0.43261 (14) 0.30305 (10)	0.0486 (3)
C14 0.95118 (13) 0.34087 (14) 0.21488 (10)	0.0469 (3)
C15 1.03427 (15) 0.41783 (15) 0.14911 (12)	0.0549 (3)
C16 0.30864 (12) 0.18357 (13) 0.26934 (11)	0.0457 (3)
C17 0.32200 (14) 0.12481 (16) 0.35496 (12)	0.0570 (3)
H17A 0.3485 0.1854 0.4305	0.068*
C18 0.29646 (18) -0.02147 (18) 0.32903 (16)	0.0717 (4)
H18A 0.3087 -0.0591 0.3867	0.086*
C19 0.2528 (2) -0.11204 (18) 0.21765 (17)	0.0804 (5)
H19A 0.2344 -0.2115 0.1997	0.097*
C20 0.23630 (18) -0.05569 (16) 0.13243 (15)	0.0703 (4)
H20A 0.2060 -0.1184 0.0573	0.084*
C21 0.26371 (13) 0.09205 (14) 0.15582 (11)	0.0508 (3)
C22 0.24469 (15) 0.15472 (15) 0.06392 (11)	0.0577 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H22A	0.1773	0.2029	0.0739	0.069*
H22B	0.2046	0.0762	-0.0095	0.069*
C23	0.38852 (15)	0.26340 (15)	0.06805 (11)	0.0518 (3)
C24	0.45555 (19)	0.23862 (18)	-0.01782 (13)	0.0684 (4)
H24A	0.4114	0.1515	-0.0800	0.082*
C25	0.5865 (2)	0.3412 (2)	-0.01221 (15)	0.0777 (5)
H25A	0.6302	0.3222	-0.0704	0.093*
C26	0.65358 (17)	0.4714 (2)	0.07818 (15)	0.0715 (4)
H26A	0.7420	0.5402	0.0811	0.086*
C27	0.58889 (15)	0.49905 (16)	0.16430 (13)	0.0583 (4)
H27A	0.6326	0.5879	0.2249	0.070*
C28	0.45808 (13)	0.39437 (14)	0.16093 (11)	0.0467 (3)
C29	0.39603 (13)	0.42144 (13)	0.25784 (10)	0.0459 (3)
C30	0.41483 (15)	0.57366 (16)	0.31439 (12)	0.0566 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0475 (6)	0.0505 (6)	0.0503 (6)	0.0185 (5)	0.0175 (5)	0.0198 (5)
N2	0.0998 (11)	0.0880 (10)	0.0966 (11)	0.0383 (9)	0.0484 (9)	0.0511 (9)
N3	0.0454 (5)	0.0503 (6)	0.0456 (6)	0.0166 (5)	0.0171 (5)	0.0152 (5)
N4	0.0931 (10)	0.0557 (8)	0.0875 (10)	0.0253 (7)	0.0296 (8)	0.0140 (7)
C1	0.0414 (6)	0.0468 (7)	0.0461 (7)	0.0105 (5)	0.0116 (5)	0.0163 (6)
C2	0.0511 (7)	0.0501 (8)	0.0691 (9)	0.0171 (6)	0.0189 (6)	0.0229 (7)
C3	0.0716 (9)	0.0565 (9)	0.0850 (11)	0.0206 (7)	0.0198 (8)	0.0363 (8)
C4	0.0769 (10)	0.0655 (10)	0.0781 (11)	0.0102 (8)	0.0259 (9)	0.0385 (9)
C5	0.0525 (8)	0.0725 (10)	0.0725 (10)	0.0095 (7)	0.0263 (7)	0.0289 (8)
C6	0.0393 (6)	0.0592 (8)	0.0535 (8)	0.0112 (6)	0.0119 (6)	0.0184 (6)
C7	0.0404 (7)	0.0874 (11)	0.0719 (10)	0.0274 (7)	0.0195 (7)	0.0325 (8)
C8	0.0533 (7)	0.0761 (9)	0.0526 (8)	0.0391 (7)	0.0175 (6)	0.0299 (7)
C9	0.0765 (10)	0.1060 (14)	0.0618 (9)	0.0620 (10)	0.0305 (8)	0.0389 (10)
C10	0.1131 (14)	0.1013 (14)	0.0517 (9)	0.0765 (12)	0.0237 (9)	0.0231 (9)
C11	0.1017 (13)	0.0676 (10)	0.0545 (9)	0.0487 (9)	0.0093 (9)	0.0153 (8)
C12	0.0703 (9)	0.0566 (8)	0.0564 (8)	0.0307 (7)	0.0122 (7)	0.0224 (7)
C13	0.0523 (7)	0.0573 (8)	0.0453 (7)	0.0300 (6)	0.0120 (6)	0.0219 (6)
C14	0.0445 (6)	0.0529 (8)	0.0474 (7)	0.0200 (6)	0.0141 (5)	0.0220 (6)
C15	0.0579 (8)	0.0502 (8)	0.0647 (9)	0.0220 (6)	0.0287 (7)	0.0244 (7)
C16	0.0411 (6)	0.0497 (7)	0.0527 (8)	0.0192 (5)	0.0220 (5)	0.0205 (6)
C17	0.0569 (8)	0.0671 (9)	0.0591 (8)	0.0262 (7)	0.0290 (6)	0.0303 (7)
C18	0.0836 (11)	0.0774 (11)	0.0891 (12)	0.0452 (9)	0.0474 (9)	0.0513 (10)
C19	0.1060 (13)	0.0592 (9)	0.1064 (15)	0.0445 (9)	0.0607 (11)	0.0415 (10)
C20	0.0872 (11)	0.0526 (8)	0.0744 (10)	0.0277 (8)	0.0401 (9)	0.0163 (8)
C21	0.0508 (7)	0.0489 (7)	0.0543 (8)	0.0194 (6)	0.0234 (6)	0.0155 (6)
C22	0.0639 (8)	0.0562 (8)	0.0450 (7)	0.0212 (7)	0.0119 (6)	0.0103 (6)
C23	0.0657 (8)	0.0585 (8)	0.0451 (7)	0.0332 (7)	0.0212 (6)	0.0246 (6)
C24	0.0968 (11)	0.0771 (10)	0.0546 (9)	0.0472 (9)	0.0390 (8)	0.0314 (8)
C25	0.1023 (13)	0.1026 (14)	0.0778 (12)	0.0643 (11)	0.0602 (10)	0.0559 (11)
C26	0.0680 (9)	0.0919 (12)	0.0898 (12)	0.0400 (9)	0.0441 (9)	0.0609 (11)

C27	0.0596 (9)	0.0626 (0)	0.0660.(0)	0.0257(7)	0.0226 (7)	0.0265(7)
C27	0.0580 (8)	0.0030(9)	0.0000(9)	0.0237(7)	0.0230(7)	0.0303(7)
C28	0.0309 (7)	0.0341(7)	0.0481(7)	0.0208(0)	0.0195 (6)	0.0202 (6)
C29	0.0439 (6)	0.04/4(7)	0.0455(7)	0.0183(5)	0.0119 (5)	0.0144(6)
C30	0.0591 (8)	0.0516 (8)	0.0559 (8)	0.0182 (6)	0.0200 (6)	0.0156 (7)
Geometric p	arameters (Å, °)					
N1-C14		1.2833 (16)	C12-	H12A	(0.9300
N1—C1		1.4082 (16)	C13-	C14	1	
N2-C15		1.1062 (17)	C14-	C15	1	.4805 (19)
N3—C29		1.2804 (16)	C16-	C17	1	.3940 (19)
N3—C16		1.4077 (16)	C16-	C21	1	
N4—C30		1.1348 (18)	C17-	C18	1	
C1—C2		1.3909 (19)	C17-	—H17A	(0.9300
C1—C6		1.3936 (18)	C18-	C19	1	
C2—C3		1.373 (2)	C18-	H18A	(0.9300
C2—H2A		0.9300	C19-	C20	1	
C3—C4		1.369 (2)	C19-	-H19A	(0.9300
С3—Н3В		0.9300	C20-	C21	1	.386 (2)
C4—C5		1.370 (2)	C20-	-H20A	0.9300	
C4—H4A		0.9300	C21-	C22	1.4994 (19)	
C5—C6		1.391 (2)	C22-	C23	1	.5008 (19)
C5—H5A		0.9300	C22-	-H22A	().9700
C6—C7		1.500 (2)	C22-	-H22B	().9700
С7—С8		1.500 (2)	C23-	C24	1	
C7—H7A		0.9700	C23-	C28	1	
C7—H7B		0.9700	C24-	C25	1	
С8—С9		1.387 (2)	C24-	-H24A	(0.9300
C8—C13		1.3980 (19)	C25-	C26	1	.374 (3)
C9—C10		1.375 (3)	C25-	-H25A	(0.9300
С9—Н9А		0.9300	C26-	C27	1	.377 (2)
C10-C11		1.369 (3)	C26-	-H26A	(0.9300
C10—H10A		0.9300	C27-	C28	1	.3927 (19)
C11—C12		1.373 (2)	C27-	-H27A	(0.9300
C11—H11A		0.9300	C28-	C29	1	.4735 (18)
C12—C13		1.393 (2)	C29-	C30	1	.4642 (19)
Cg1…Cg1 ⁱ		3.673 (4)	Cg2·	··Cg2 ⁱⁱ	3	.793 (4)
C14—N1—C	21	123.45 (11)	N2—	-C15—C14	1	75.67 (16)
C29—N3—C	216	123.40 (10)	C17-		1	19.88 (12)
C2—C1—C6)	119.79 (12)	C17-		1	15.52 (12)
C2-C1-N1		115.43 (11)	C21-		1	24.48 (12)
C6-C1-N1		124.70 (12)	C18-		1	20.68 (14)
C3—C2—C1		120.61 (14)	C18-		1	19.7
С3—С2—Н2	2A	119.7	C16-	—С17—Н17А	1	19.7
С1—С2—Н2	2A	119.7	C17-		1	19.75 (15)
C4—C3—C2		119.76 (15)	C17-		1	20.1
С4—С3—Н3	B	120.1	C19-		1	20.1
С2—С3—Н3	B	120.1	C18-		1	20.00 (15)

C3—C4—C5	120.23 (14)	C18—C19—H19A	120.0
C3—C4—H4A	119.9	С20—С19—Н19А	120.0
C5—C4—H4A	119.9	C19—C20—C21	121.66 (15)
C4—C5—C6	121.38 (14)	С19—С20—Н20А	119.2
С4—С5—Н5А	119.3	C21—C20—H20A	119.2
С6—С5—Н5А	119.3	C20—C21—C16	118.00 (13)
C5—C6—C1	118.08 (14)	C20—C21—C22	122.27 (13)
C5—C6—C7	122.46 (13)	C16—C21—C22	119.73 (12)
C1—C6—C7	119.45 (12)	C21—C22—C23	109.89 (11)
C8—C7—C6	110.19 (11)	C21—C22—H22A	109.7
С8—С7—Н7А	109.6	C23—C22—H22A	109.7
С6—С7—Н7А	109.6	C21—C22—H22B	109.7
С8—С7—Н7В	109.6	C23—C22—H22B	109.7
С6—С7—Н7В	109.6	H22A—C22—H22B	108.2
H7A—C7—H7B	108.1	C24—C23—C28	118.32 (13)
C9—C8—C13	118.34 (15)	C24—C23—C22	122.21 (13)
C9—C8—C7	122.16 (14)	C28—C23—C22	119.47 (12)
C13—C8—C7	119.49 (12)	C25—C24—C23	120.81 (16)
C10—C9—C8	120.89 (16)	C25—C24—H24A	119.6
С10—С9—Н9А	119.6	C23—C24—H24A	119.6
С8—С9—Н9А	119.6	C26—C25—C24	120.87 (14)
С11—С10—С9	120.64 (15)	C26—C25—H25A	119.6
C11-C10-H10A	119.7	С24—С25—Н25А	119.6
C9—C10—H10A	119.7	C25—C26—C27	119.47 (15)
C10-C11-C12	119.79 (16)	С25—С26—Н26А	120.3
C10-C11-H11A	120.1	С27—С26—Н26А	120.3
C12—C11—H11A	120.1	C26—C27—C28	120.16 (15)
C11—C12—C13	120.34 (15)	С26—С27—Н27А	119.9
C11—C12—H12A	119.8	С28—С27—Н27А	119.9
C13—C12—H12A	119.8	C27—C28—C23	120.32 (12)
C12—C13—C8	119.93 (13)	C27—C28—C29	119.32 (12)
C12—C13—C14	119.64 (12)	C23—C28—C29	120.34 (11)
C8—C13—C14	120.42 (12)	N3—C29—C30	113.12 (11)
N1—C14—C13	131.09 (12)	N3—C29—C28	130.40 (12)
N1—C14—C15	113.18 (11)	C30—C29—C28	116.35 (11)
C13—C14—C15	115.56 (11)	N4—C30—C29	178.61 (15)
C14—N1—C1—C2	-144.10 (13)	C29—N3—C16—C17	144.15 (12)
C14—N1—C1—C6	39.14 (19)	C29—N3—C16—C21	-39.94 (18)
C6—C1—C2—C3	-4.5 (2)	C21—C16—C17—C18	2.36 (19)
N1—C1—C2—C3	178.60 (12)	N3—C16—C17—C18	178.47 (12)
C1—C2—C3—C4	2.7 (2)	C16—C17—C18—C19	-2.1 (2)
C2—C3—C4—C5	0.7 (3)	C17—C18—C19—C20	0.7 (2)
C3—C4—C5—C6	-2.2 (3)	C18—C19—C20—C21	0.4 (3)
C4—C5—C6—C1	0.4 (2)	C19—C20—C21—C16	-0.2 (2)
C4—C5—C6—C7	179.82 (14)	C19—C20—C21—C22	-179.33 (14)
C2-C1-C6-C5	2.86 (19)	C17—C16—C21—C20	-1.19 (18)
N1—C1—C6—C5	179.49 (12)	N3—C16—C21—C20	-176.93 (12)
C2—C1—C6—C7	-176.53 (12)	C17—C16—C21—C22	177.98 (12)
N1—C1—C6—C7	0.1 (2)	N3—C16—C21—C22	2.23 (18)

C5—C6—C7—C8	114.56 (15)	C20—C21—C22—C23	-116.19 (15)	
C1—C6—C7—C8	-66.07 (17)	C16—C21—C22—C23	64.68 (15)	
C6—C7—C8—C9	-113.97 (14)	C21—C22—C23—C24	113.44 (15)	
C6—C7—C8—C13	66.57 (16)	C21—C22—C23—C28	-66.68 (15)	
C13—C8—C9—C10	1.2 (2)	C28—C23—C24—C25	-0.7 (2)	
C7—C8—C9—C10	-178.22 (14)	C22—C23—C24—C25	179.17 (14)	
C8—C9—C10—C11	0.7 (2)	C23—C24—C25—C26	-0.6 (2)	
C9-C10-C11-C12	-1.1 (2)	C24—C25—C26—C27	0.2 (2)	
C10-C11-C12-C13	-0.5 (2)	C25—C26—C27—C28	1.4 (2)	
C11—C12—C13—C8	2.5 (2)	C26—C27—C28—C23	-2.72 (19)	
C11-C12-C13-C14	-176.18 (12)	C26—C27—C28—C29	175.55 (12)	
C9—C8—C13—C12	-2.84 (19)	C24—C23—C28—C27	2.32 (19)	
C7—C8—C13—C12	176.64 (12)	C22—C23—C28—C27	-177.56 (12)	
C9—C8—C13—C14	175.83 (12)	C24—C23—C28—C29	-175.94 (12)	
C7—C8—C13—C14	-4.68 (18)	C22—C23—C28—C29	4.19 (18)	
C1-N1-C14-C13	0.1 (2)	C16—N3—C29—C30	-177.84 (11)	
C1—N1—C14—C15	175.05 (11)	C16—N3—C29—C28	-2.2 (2)	
C12-C13-C14-N1	142.00 (14)	C27-C28-C29-N3	-139.03 (14)	
C8-C13-C14-N1	-36.7 (2)	C23—C28—C29—N3	39.2 (2)	
C12-C13-C14-C15	-32.90 (17)	C27—C28—C29—C30	36.50 (17)	
C8-C13-C14-C15	148.42 (12)	C23—C28—C29—C30	-145.22 (12)	
Symmetry codes: (i) $-x+2$, $-y+1$, $-z+1$; (ii) $-x+1$, $-y+1$, $-z$.				

